If it's not what You are looking for type in the equation solver your own equation and let us solve it.
54.3x^2-(11.5*54.3)x+(33.0625*54.3)-((4x^2)*54.3)=0
We add all the numbers together, and all the variables
54.3x^2-(624.45)x-(4x^2*54.3)+(1795.29375)=0
We add all the numbers together, and all the variables
54.3x^2-(624.45)x-(4x^2*54.3)+1795.29375=0
We multiply parentheses
54.3x^2-624.45x-(4x^2*54.3)+1795.29375=0
We get rid of parentheses
54.3x^2-4x^2*54.3-624.45x+1795.29375=0
Wy multiply elements
54.3x^2-217.2x^2-624.45x+1795.29375=0
We add all the numbers together, and all the variables
-162.9x^2-624.45x+1795.29375=0
a = -162.9; b = -624.45; c = +1795.29375;
Δ = b2-4ac
Δ = -624.452-4·(-162.9)·1795.29375
Δ = 1559751.21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-624.45)-\sqrt{1559751.21}}{2*-162.9}=\frac{624.45-\sqrt{1559751.21}}{-325.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-624.45)+\sqrt{1559751.21}}{2*-162.9}=\frac{624.45+\sqrt{1559751.21}}{-325.8} $
| 2x=3=7x | | (4-7y)(7+4y)=(4−7y)(7+4y)= | | 20/120=x/93 | | 20/120=93/c | | 6x-22=6x-46 | | 3x+10=5x-17 | | (5.75-x)(5.75-x)=0 | | -8(8+6v)=18-7v | | 25x-45=25x+25 | | 3x18=9 | | 9x-18=-9x-54 | | 15+0.90m=2(20+.25m) | | 20+5x=18+4x | | 2u+18=20 | | 3d+4d=39 | | 17+4x=15+3x | | 38+0.35m=2(20+1m) | | k-4.8=0.32-5.4k | | 18.50x+0.15x=18.00x+0.25x | | 2x+17=4x-79 | | 7-y=5-3 | | 7x+20=34+5x | | 8x-1=137 | | −4x−20=4x+12. | | -2k+4(3k+8)=17+5k | | j-(5-3j)=7 | | 10x+5=-15x+55 | | -3=c+4 | | j-(-5-3j)=7 | | 120+x+45=180 | | -1/6x+2/7=4/3x-5/14 | | 8x-1+8x-1-6x-15=0 |